Lesson 8

Finding Similar Items, Collaborative Filtering, and Distance Measures for Similarity Analysis

Similarity Search

- Refers to a data mining method which helps in discovering items which have similarities in datasets using the Machine Learning algorithms
- Discovering interesting patterns
- Enables categorization and summarization of data and relationships among data

2019

Finding Similar Items

- Finding similar excellent performance of students in Python programming
- Similar showrooms of a specific car model which show high sales per month
- Recommending books on similar topic such as in 'Internet of Things' by Raj Kamal from McGraw-Hill Higher Education, etc.

Nearest Neighbour Search (NNS)

- Finds that a point in a given set is most similar (closest) to a given point
- Less distant (closer) neighbour considered similar

2019

NNS Algorithm

- Consider set S having points in a space
 M
- Consider a queried point q ∈ M, which means q is member of M.
- k-NNS algorithm finds the k-closet (1-NN) points to q in S.

Dissimilarity function

- Having larger value means less similar
- Used to find similar items
- Greater distance means greater dissimilarity

Dissimilarity coefficient

- Relates to a distance metric in metrics space in v-dimensional space
- An algorithm computes squared Euclidean, Euclidean, Manhattan, or Minkowski distances [Refer Equations (6.20a) to (6.20d)]

Distance metric symmetry and triangular inequality

- Triangular inequality— Consider three vectors of lengths x, y, and z.
- Then, triangular inequality means z < x + y.

Triangular inequality Theorem

- Third side of a triangle is less than the sum of two other sides, and never equal
- Applies to v-dimensional space also

Asymmetric Dissimilarity

• Triangular inequality not true (Bergman divergence)

Jaccard Similarity of Sets

- $J(\mathfrak{A}, \mathfrak{B}) = (\mathfrak{A} \cap \mathfrak{B}) / (\mathfrak{A} \cup \mathfrak{B}) \dots$ (6.22)
- $\mathfrak{A} \cap \mathfrak{B}$ means the number of elements or items that are same in sets \mathfrak{A} and \mathfrak{B}
- 𝔅 ∪ 𝔅 means the number of elements or items present in union of both the sets.

Similarity of Documents

- Compute Jaccard similarity coefficient method
- Latent Semantic Indexing method

Collaborative Filtering

- Refers to a filtering algorithm, which filters the items sets that have similarities with different items in a dataset
- Finds the sets with items having the same or close similarity coefficients

Distance Measures for Finding Similar Items or Users

- Compute the dissimilarities
- Complement of dissimilarity gives similarity
- Distance can be defined as the reciprocal of weight in v-dimensional space.

D_{Eu}^{2} , D_{Eu} , D_{Ma} , D_{Mi} , and D_{Ha}

 Equations (6.20a to e)] or any other distance metric, for example, Jaccard distance D_{Ja}, cosine distance D_{Cos}, edit distance D_{Ed}.

2019

Euclidean D_{Eu}

 In terms of distance between two datapoints A and B (Equations 6.20a and 20b)

2019

Manhattan Distance D_{Ma}

 In terms of sum of axial distances between two data-points A and B (Equations 6.20a and 20b)

Distances D_{Ja} , D_{Cos} , and D_{Ed}

- Jaccard distance D_{Ja} ,
- $D_{Ja}(\mathfrak{A},\mathfrak{B}) = 1 J(\mathfrak{A},\mathfrak{B})$...(6.23)
- Cosine distance D_{Cos}, [Equation (6.23a)]
- Edit distance D_{Ed}. [a distance measure for dissimilarity between two set of strings or words]

Vector Cosine-Based Similarity

In terms of angle φ_{UV} between two vectors U and V (Equation 6.23b)

Distance D_{Ed}

- Equals the minimum number of inserts and deletes of characters needed to transform one set into another
- Applications oin text analytics and natural language processing, similarities in DNA sequences [DNA sequences are strings of characters.]

Distance D_{Ha}

 If both U and V are vectors, Hamming distance D_{Ha} equals to the number of different elements between these two vectors

2019

Summary

We learnt:

- Similarity and Dissimilarity Coefficients
- Distance measure related to Dissimilarity
- Jaccard, Squared Euclidean, Euclidean, Manhattan, Minkowski, Hamming and Edit Distances
- Cosine distance and Cosine Similarity

2019

End of Lesson 8 on Finding Similar Items, Collaborative Filtering, and Distance Measures for Similarity Analysis